

Journal of Organometallic Chemistry 486 (1995) 193-198

Synthesis and characterization of *ansa*-[1,1-bis(inden-1,1-diyl)l-silacyclopentane]zirconium dichlorides. Crystal structures of *meso*and *racemic*-[1,1-bis[inden-1,1-diyl)-1-silacyclopentane]-dichloro zirconium and *racemic*-[1,1-bis(4,5,6,7-tetrahydroinden-1,1-diyl)-1-sila-cylopentane]dichlorozirconium

Hendrik J.G. Luttikhedde ^a, Reko P. Leino ^a, Jan H. Näsman ^{a,*}, Markku Ahlgrén ^b, Tapani Pakkanen ^b

^a Department of polymer Technology, Åbo Akademi University, Porthansgatan 3, FIN-20500 Åbo, Finland ^b Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101, Joensuu, Finland

Received 5 May 1994

Abstract

The reaction of 1-silacyclopentylbis(1-indenyl) with two equivalents of BuLi gives the di-anion $(CH_2)_4 Si(C_9H_6)_2^{2-}$, which with $ZrCl_4$ gives the *ansa*-metallocene dichlorides *racemic*- and *meso*- $(CH_2)_4Si(C_9H_6)_2ZrCl_2$ (1a, 1b). Hydrogenation of 1a yields *racemic*- $(CH_2)_4Si(C_9H_{10})ZrCl2$ (2). The structure of 1a, 1b and 2 have been obtained by X-ray diffraction studies. Both 1a and 2 show the expected C_2 -axial symmetry.

Keywords: Zirconium; Silacyclopentyl; Indenyl; Crystal structure; Ansa-bridging; Metallocenes

1. Introduction

Chiral complexes of Group 4 transition metals incorporating two appropriately substituted cyclopentadienyl ligands are finding increasing application [1] in enantioselective synthesis [2] and stereoselective polymerization [3]. An excellent review [1] has appeared and theoretical studies concerning structural variations and tacticity control [4], as well as the role of agostic hydrogen interactions [5], have been reported. The most stereoselective species are found among bridged ansa-metallocenes in which the two indenyl, tetrahydroindenyl, or otherwise-substituted cyclopentadienyl groups are linked by a bridge between the 1 and 1' positions [3]. The catalytic species of α -olefin polymerization derived from Group 4 metallocene precursors is the 14-electron $3d^0$ cation [3]. It is generated by mixing the metallocene dichloride with a large excess of methylalumoxane [6], or by a nearly stoichiometric reaction of a metallocene dialkyl with an activator such as $[C_6H_5(CH_3)_2NH^+][B(C_6F_5)_4^-]$ [7], $[(C_6H_5)_3C^+]$ $[B(C_6F_5)_4^-]$ [8], or $B(C_6F_5)_3$ [9]. Lewis base-adducts of cationic Group 4 metallocene alkyls, single component catalysts, have been reported [10]. We describe here the synthesis, characterization and crystal structures of *rac-*, *meso-*1-silacyclopentylbis(1-indenyl)zirconium dichloride (**1a**, **1b**) and *rac-*1-silacyclopentylbis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride (**2**). The polymerizations of propene, ethene and ethene-propene mixtures by **1a** have been described in detail by Tsai and Chien [11].

2. Results and discussion

The synthesis of 1a, 1b and 2 is outlined in Scheme 1. Double deprotonation of 1-silacyclopentylbis(1-indene) and subsequent reaction of the di-anion with $ZrCl_4$ gives the *ansa*-metallocenes 1a and 1b. The ¹H

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05025-7

NMR spectra of **1a** and **1b** show the resonances of H_{α} at 6.08 ppm and 6.12 ppm and those of H_{β} at 6.88 and 6.95 ppm, respectively (H_{α} =C(12)-H, \dot{H}_{β} =C(13)-H, vide infra). The values for 1a correspond exactly to those reported for the dimethylsilyl-bridged analogue [12]. The 13 C spectra of **1a** and **1b** show the expected nine resonances for the indenyl groups. The silacyclopentyl ring in 1a gives rise to two absorptions, at 27.2 and 12.4 ppm, for C(2), C(3) and C(1), C(4) respectively, as expected for a pair of enantiotopic methylene carbons in a C₂-symmetrical molecule. In the case of 1b, however, C(1), C(2), C(3) and C(4) are magnetically non-equivalent and give rise to 4 absorptions, at 27.6, 26.0, 12.1 and 11.2 ppm, respectively, as expected for a pair of diastereotopic methylene carbons [13]. The ¹H NMR spectrum of 2 shows doublets from H_{α} and H_{β} at 5.46 and 6.64 ppm, values close to those found for the dimethylsilyl-bridged analogue [14]. The enantiotopic pair of methylene carbons of the silacyclopentyl ring in 2 show the expected two resonances for C(1), C(4) and C(2), C(3); at 11.4 and 26.7 ppm, respectively.

The molecular structures of 1a, 1b and 2 are shown

Fig. 2. Molecular structure of (R, S)-1b.

in Figs. 1-3. All three complexes show the expected geometry, with planar C5-rings, the average deviations from planarity being 0.01 Å complexes 1a and 2 adopt the C_2 symmetrical conformation. The symmetry axis bisecting the Cl-Zr-Cl angles is almost perfectly maintained, although the molecules are not situated on a crystallographic C2 axis. The coordination sites are framed in an equivalent fashion, in accordance with the requirements for equivalent enantiofacial coordination of prochiral substrates. In 1b the two chloride ligands, and hence the two coordination sites, are inequivalent, one of them being sterically hindered by the benzo-units from both top and bottom whereas the other is essentially unencumbered. The geometry of 1a deviates only slightly from that of the dimethylsilylbridged analogue. A striking feature, however, is the

Fig. 1. Molecular structure of (S, S)-1a.

Fig. 3. Molecular structure of (R, R)-2.

enlargement of the Cp(1)–Zr–Cp(2) angle by approximately 7°, caused by strain introduced by the silacyclopentyl ring. The C(1)–Si–C(4) angle is approximately 15° smaller than the CH₃–Si–CH₃ angle in the corresponding dimethylsilyl-bridged analogue, and causes an increased stereorigidity in the molecule, as is clearly demonstrated by the polymerization behaviour of **1a** [11]. Changes of the substituents in silicon bridged metallocenes do alter their chemical behaviour, as was also observed for changes in the bridge of (η^5 -C₅H₄CR₂- η^5 -C₁₃H₈)MCl₂ (M=Zr, Hf; R=CH₃, [15], C₆H₆ [16]) complexes.

3. Experimental section

Reactions with organometallic compounds were carried out under argon in Schlenk-type glassware. Solvents were dried and distilled under argon prior to use. 1,1'-Dichloro-1-silacyclopentane was purchased from ABCR and was distilled under argon prior to use, and 1,1-di(1-indenyl)-1-silacyclopentane was prepared as previously reported [11]. Hydrogenations were carried out in a 250 ml Berghof BAR 845 pressure vessel. The NMR-spectra were recorded with a Jeol GX 400 (¹H: 400 MHz, ¹³C: 100.6 MHz) NMR spectrometer with Me₄Si as internal standard. Direct inlet electron ion-

Table 1						
Crystallographic	data	for	1a.	1b	and	2

ization mass spectra (EIMS) were obtained at 70 eV with a VG-7070E mass spectrometer.

3.1. X-ray structure determinations

Details of crystal parameters, data collection parameters and refined data for 1a, 1b and 2 are summarized in Table 1. Intensity measurements were made on a Nicolet R3m diffractometer using graphite-monochromatized Mo K α radiation. Monitoring of two intensity check reflections showed no crystal decay during data collection. The data sets were corrected for Lorentz and polarization factors. Empirical absorption corrections were made from Ψ -scan data for 1a and 1b.

The crystal structures were determined by direct methods and subsequent Fourier synthesis using the SHELXTL program package [17]. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions with fixed isotropic thermal parameters (C-H 0.96 Å and U 0.08 Å²). For 2 the values of R and wR for the alternative absolute structure were practically the same (R 0.037 and wR 0.044). Selected bond lengths and angles are presented in Table 2, and the final atomic coordinates in Tables 3–5. Complete lists of bond lengths and angles and tables of hydrogen atom coordinates and anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

	1a	1b	2
Formula weight	474.62	474.62	482.68
Crystal system	monoclinic	triclinic	orthorhombic
Space group	$P2_1/c$	<i>P</i> -1	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	7.594(2)	10.193(2)	10.552(2)
<i>b</i> (Å)	24.671(9)	10.416(2)	12.130(3)
c (Å)	10.684(4)	10.467(2)	17.030(4)
α (deg)	90	64.04(1)	90
β (deg)	97.73(3)	86.35(2)	90
γ (deg)	90	85.22(2)	90
Ζ	4	2	4
V (Å ³)	1983(1)	995.2(5)	2179.8(9)
$\mu ({\rm mm^{-1}})$	0.88	0.88	0.80
F(000)	960	480	992
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.589	1.584	1.471
Radiation	Μο Κα	Μο Κα	Μο Κα
Crystal dimensions (mm)	0.10 imes 0.20 imes 0.50	0.20 imes 0.30 imes 0.45	$0.30 \times 0.30 \times 0.35$
2θ limits (deg)	5-55	5-65	5-65
Scan mode	ω	ω	ω
Scan speed (deg/min)	2.44-29.3	2.44-29.3	2.44-29.3
Scan width (deg)	1.4	1.6	1.6
Unique reflections	4620	7248	4405
Observed reflections $(I > n\sigma(I))$	3099 (<i>n</i> =2)	5348 (<i>n</i> =3)	2964 (<i>n</i> =3)
Number of variables	235	235	235
R	0.039	0.032	0.036
wR	0.041	0.040	0.043
$(\Delta \rho)_{\rm max}/(\Delta \rho)_{\rm min}$	0.44 / - 0.55	0.64 / - 0.67	0.49 / - 0.35

 $R = \sum ||F_0| - |F_c|| / \sum |F_0|, w = 1 / (\sigma^2(F) + 0.0005 F^2).$

Table 2			
Selected bond	lengths (Å) and a	angles (°) in 1:	a, 1b and 2

	1a	1b	2	
Zr-Cl(1)	2.432(1)	2.405(1)	2.430(2)	
Zr-Cl(2)	2.426(1)	2.450(1)	2.438(2)	
Zr-C(11)	2.478(4)	2.492(3)	2.485(4)	
Zr-C(12)	2.485(4)	2.478(3)	2.444(4)	
Zr-C(13)	2.596(4)	2.562(3)	2.562(5)	
Zr-C(14)	2.665(4)	2.659(3)	2.649(5)	
Zr-C(15)	2.552(4)	2.587(3)	2.560(4)	
Zr-C(21)	2.473(4)	2.468(2)	2.479(4)	
Zr-C(22)	2.486(4)	2.477(2)	2.442(4)	
Zr-C(23)	2.625(4)	2.594(2)	2.550(4)	
Zr-C(24)	2.693(4)	2.685(2)	2.635(4)	
Zr-C(25)	2.556(4)	2.569(2)	2.550(4)	
Zr-Cp(1)	2.247	2.248	2.236	
Zr-Cp(2)	2.262	2.252	2.225	
Si–C(11)	1.866(4)	1.868(2)	1.876(4)	
Si-C(21)	1.856(4)	1.874(3)	1.876(4)	
C(11)–C(12)	1.438(5)	1.434(4)	1.424(6)	
C(12)–C(13)	1.400(6)	1.412(3)	1.427(6)	
C(13)–C(14)	1.425(6)	1.417(4)	1.388(7)	
C(14)–C(15)	1.439(5)	1.443(4)	1.426(6)	
C(11)–C(15)	1.458(6)	1.450(3)	1.428(6)	
C(21)–C(22)	1.434(6)	1.435(4)	1.427(6)	
C(22)–C(23)	1.407(6)	1.409(4)	1.414(7)	
C(23)–C(24)	1.420(6)	1.423(3)	1.394(6)	
C(24)–C(25)	1.432(5)	1.445(4)	1.428(6)	
C(21)–C(25)	1.458(5)	1.446(3)	1.439(5)	
Cl(1)-Zr-Cl(2)	98.2(1)	97.3(1)	99.4(1)	
Cp(1)-Zr-Cp(2)	127.6	127.7	126.5	
C(11)-Si-C(21)	95.2(2)	95.4(1)	94.2(2)	
C(1)-Si-C(4)	96.5(2)	96.7(1)	97.0(2)	
C(1)-Si-C(21)	116.4(2)	116.5(1)	115.4(2)	
C(4)–Si–C(21)	115.7(2)	112.9(1)	118.0(2)	
C(1)-Si-C(11)	119.0(2)	117.5(1)	118.5(2)	
C(4)-Si-C(11)	115.6(2)	119.2(1)	115.4(2)	

Cp(1) and Cp(2) refer to the centroids of the C(11)-C(12)-C(13)-(14)-C(15) and C(21)-C(22)-C(23)-C(24)-C(25) rings respectively.

3.2. Synthesis of 1-silacyclopentylbis(1-indenyllithium).

An ice cold solution of 1,1'-di(1-indenyl)-1-silacyclopentane (18.5 g, 58.8 mmol) in 100 ml of diethyl ether was treated dropwise with butyllithium (47 ml, 2.5 M in hexanes, 117.5 mmol) and the mixture was stirred for two hours at ambient temperature. The diethyl ether was removed in vacuo and 50 ml pentane added. The white dilithium-salt was filtered off, washed twice with 50 ml pentane and dried in vacuo.

3.3. Synthesis of racemic dichloride (1a) and the mesodichloride (1b)

A suspension of zirconium-tetrachloride (4.7 g, 20.2 mmol) in 50 ml of toluene was treated with 1-silacyclopentylbis(1-indenyllithium) (7.3 g, 22.4 mmol), added in portions. The mixture was stirred overnight, during which a dark red suspension formed. The toluene was evaporated off and the residue was ex-

3

Atomic coordinates ($\times 10^4)$ and equivalent isotropic displacement coefficients (Å^2 $\times 10^3)$ for 2

	x	у	z	U _{eq}
Zr	2065(1)	4363(1)	3126(1)	34(1)
Cl(1)	1326(2)	5437(2)	4240(1)	84(1)
Cl(2)	4082(1)	3722(1)	3654(1)	68(1)
Si	714(1)	3894(1)	1381(1)	36(1)
C(1)	- 782(5)	4421(5)	917(3)	62(2)
C(2)	- 757(9)	3879(10)	149(5)	147(5)
C(3)	238(7)	3212(7)	- 85(4)	88(3)
C(4)	1240(5)	3011(4)	540(3)	54(2)
C(11)	603(4)	3177(3)	2354(2)	34(1)
C(12)	1606(4)	2507(3)	2646(3)	38(1)
C(13)	1452(5)	2378(4)	3473(3)	48(1)
C(14)	380(5)	2958(4)	3700(3)	48(1)
C(15)	- 135(4)	3483(3)	3022(3)	40(1)
C(16)	-1354(4)	4130(5)	3054(3)	58(2)
C(17)	- 1960(7)	4086(12)	3831(5)	157(6)
C(18)	- 1530(9)	3471(12)	4434(6)	157(6)
C(19)	- 250(6)	3012(6)	4494(3)	76(2)
C(21)	1833(4)	4981(3)	1746(2)	35(1)
C(22)	1442(4)	5859(3)	2248(3)	43(1)
C(23)	2517(5)	6306(3)	2628(3)	48(1)
C(24)	3588(4)	5729(4)	2380(4)	40(1)
C(25)	3182(3)	4886(3)	1852(3)	35(1)
C(26)	4094(4)	4143(4)	1419(3)	45(1)
C(27)	5455(5)	4303(6)	1715(4)	74(2)
C(28)	5795(5)	5434(5)	1903(4)	71(2)
C(29)	4976(5)	5947(4)	2546(3)	51(2)

Table 4

Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($\mathring{A}^2 \times 10^3$) for 1b

	X	у	z	U _{eq}
Zr	3217(1)	2506(1)	6795(1)	28(1)
Cl(1)	2481(1)	928(1)	9156(1)	42(1)
Cl(2)	4644(1)	3875(1)	7471(1)	50(1)
Si	2494(1)	2737(1)	3653(1)	34(1)
C(1)	1405(3)	1726(3)	3085(3)	52(1)
C(2)	1012(3)	2838(4)	1616(3)	67(1)
C(3)	2175(3)	3722(3)	824(3)	55(1)
C(4)	2962(2)	4093(3)	1821(2)	39(1)
C(11)	3823(2)	1686(2)	4918(2)	36(1)
C(12)	4963(2)	2277(3)	5138(3)	41(1)
C(13)	5476(2)	1383(3)	6486(3)	45(1)
C(14)	4712(2)	170(3)	7134(3)	41(1)
C(15)	3670(2)	356(2)	6184(2)	35(1)
C(16)	2746(3)	- 718(3)	6577(3)	44(1)
C(17)	2896(3)	- 1918(3)	7841(3)	56(1)
C(18)	3913(3)	- 2087(3)	8769(3)	58(1)
C(19)	4802(3)	- 1093(3)	8452(3)	52(1)
C(21)	1700(2)	3571(2)	4794(2)	32(1)
C(22)	2244(2)	4741(2)	4911(2)	36(1)
C(23)	1745(2)	4847(2)	6149(3)	38(1)
C(24)	820(2)	3780(2)	6830(2)	34(1)
C(25)	813(2)	2964(2)	6015(2)	31(1)
C(26)	-14(2)	1782(3)	6493(2)	40(1)
C(27)	- 790(2)	1476(3)	7700(3)	46(1)
C(28)	- 790(2)	2304(3)	8478(3)	48(1)
C(29)	- 14(2)	3420(3)	8070(3)	42(1)

Table 5

Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients ($\mathring{A}^2 \times 10^3$) for 1a

	x	у	z	U_{eq}
Zr	1572(1)	4053(1)	2822(1)	32(1)
Cl(1)	- 1433(1)	4330(1)	3074(1)	48(1)
Cl(2)	2752(2)	4938(1)	2398(1)	49(1)
Si	3740(1)	2885(1)	2937(1)	37(1)
C(1)	3180(7)	2155(2)	3172(4)	57(2)
C(2)	4808(8)	1862(2)	2770(5)	68(2)
C(3)	6466(7)	2190(2)	3216(4)	62(2)
C(4)	6121(5)	2771(2)	2707(4)	48(1)
C(11)	3373(5)	3387(2)	4182(3)	37(1)
C(12)	4263(5)	3901(2)	4381(4)	42(1)
C(13)	3289(6)	4258(2)	5040(4)	44(1)
C(14)	1748(5)	3980(2)	5324(3)	40(1)
C(15)	1762(5)	3448(2)	4772(3)	35(1)
C(16)	327(6)	3083(2)	4882(4)	42(1)
C(17)	- 987(6)	3250(2)	5547(4)	52(2)
C(18)	- 991(6)	3770(2)	6110(4)	54(2)
C(19)	341(6)	4134(2)	6009(4)	49(1)
C(21)	2350(5)	3246(1)	1637(3)	35(1)
C(22)	447(5)	3274(2)	1470(4)	43(1)
C(23)	- 165(5)	3710(2)	679(4)	46(1)
C(24)	1341(5)	3970(2)	292(3)	40(1)
C(25)	2894(5)	3700(1)	902(3)	33(1)
C(26)	4608(5)	3885(2)	699(4)	39(1)
C(27)	4719(7)	4294(2)	- 149(4)	51(2)
C(28)	3180(7)	4544(2)	- 779(4)	56(2)
C(29)	1517(7)	4404(2)	- 573(4)	53(2)

tracted with 150 ml dichloromethane to leave lithium chloride. Concentration of the extract and cooling to -15° C gave bright orange microcrystals of **1a** (4.4 g, 9.3 mmol, 46%). Two subsequent crystallizations from the mother liquor at -30° C gave dark red **1b** (0.6 g, 1.3 mmol, 6%). In the mass spectrum of **1a**, parent ions of composition C₂₂H₂₀SiZrCl⁺₂ were observed in the appropriate isotope ratios at m/e=472-480, corresponding to the base peak. In the mass spectrum of **1b**, parent ions of composition C₂₂H₂₀SiZrCl⁺₂ were observed at m/e=472-480 in the appropriate isotope ratios. The base peak, however, corresponded to C₁₃H₁₅Si⁺, at m/e=199.

¹H-NMR (CD₂Cl₂) **1a**: δ 7.58 (dt, 3*J*=8.7 Hz, ⁴*J*=1.1 Hz, 2H), 7.49 (dq, ³*J*=8.7 Hz, ⁴*J*=1.1 Hz, 2H), 7.37 (ddd, ³*J*=8.5, 6.7 Hz, ⁴*J*=0.9 Hz, 2H), 7.08 (ddd, ³*J*=8.7, 6.7 Hz, ⁴*J* = 1.1 Hz, 2H), 6.88 (dd, ³*J*=3.2 Hz, ⁴*J*=1.1 Hz, 2H), 6.08 (d, ³*J*=3.2 Hz, 2H), 2.32–2.22 (m, 2H), 1.90–1.62 (m, 6H).

¹³C-NMR (CD₂Cl₂) **1a**: δ 133.8, 128.0, 127.0, 126.3, 126.0, 124.5, 118.2, 117.9, 88.6 27.2, 12.4.

¹H-NMR(CDCl₃) **1b**: δ 7.53 (dt, ³*J*=8.7 Hz, ⁴*J*=0.9 Hz, 2H), 7.50 (dd, ³*J*=8.7 Hz, ⁴*J*=0.9 Hz, 2H), 7.21 (ddd, ³*J*=8.7. 6.7 Hz, ⁴*J*=0.9 Hz, 2H), 6.95 (dd, ³*J*=3.2 Hz, ⁴*J*=0.9 Hz, 2H), 6.12 (d, ³*J* = 3.2 Hz, 2H), 2.18–2.10 (mt, ³*J* = 7.2 Hz, 2H), 2.08–1.99 (mt, ³*J*=7.2 Hz, 2H), 1.88 (t, ³*J*=7.2 Hz, 2H) 1.53 (t, ³*J* = 7.2 Hz, 2H).

¹³C-NMR (CDCl₃) **1b**: 134.7, 127.9, 127.3, 126.1, 125.9, 125.4, 119.7, 119.2, 89.2, 27.6, 26.0, 12.1, 11.2.

3.4. Synthesis of the racemic-1 (2).

Compound **1a** (1.12 g, 2.3 mmol) containing PtO₂ (23 mg, 0.1 mmol) in 100 ml of dichloromethane was kept under hydrogen at 100 bar for 6 h. The pale green suspension was filtered through Celite and the solvent evaporated. Diffusion of a petroleum ether (b.p. 40– 60°C) into a concentrated solution of the residue in toluene at -30° C yielded light green **2** (1.0 g, 2.0 mmol, 90%). The mass spectrum of **2** showed parent ions of composition C₂₂H₂₈SiZrCl⁺₂ at m/e=480-488in the appropriate isotope ratios. The base peak, however, corresponded to the fulvene complex C₂₂H₂₇-SiZrCl⁺ (M⁺-HCl), which gave the correct isotope ratios at m/e=444-452.

¹H NMR (CDCl₃) **2**: δ 6.64 (d, ³*J*=3.0 Hz, 2H), 5.46 (d, ³*J* = 3.0 Hz, 2H), 2.97 (ddd, ³*J*=16.5, 9.5, 5.8 Hz, 2H), 2.70 (dt, ³*J*=16.5, 5.0 Hz, 2H), 2.58 (ddd, ³*J*=16.5, 9.5, 5.8 Hz, 2H), 2.28 (dt, ³*J*=16.5, 5.0 Hz, 2H), 2.11–2.01 (m, 2H), 2.00–1.91 (m, 2H), 1.83–1.67 (m, 4H), 1.66–1.57 (m, 2H), 1.53–1.42 (m, 2H), 1.37–1.24 (m, 4H). ¹³C NMR (CDCl₃) **2**: δ 138.4, 128.5, 125.1, 112.7, 101.3, 26.7, 26.1, 24.2, 22.2, 22.0, 11.4.

Acknowledgements

This work was supported by the Finnish Technology Development Centre (TEKES). We thank Mrs. P. Pennanen (NMR spectra) and Mr. M. Reunanen (EIMS) for their assistance in characterizing the products.

References and notes

- [1] R.L. Halterman, Chem. Rev. 92, (1992) 965.
- [2] (a) Hydrogenation: R.D. Broene and S.L. Buchwald, J. Am. Chem. Soc. 115, (1993) 12569. R.B. Grossman, R.A. Doyle and S.L. Buchwald, Organomettalics 10 (1991) 1501. R. Waymouth and P. Pino, J. Am. Chem. Soc. 112 (1990) 4911; (b) Asymmetric epoxidation: S.L. Colletti and R.L. Halterman, Tetrahedron Lett. 33, (1992) 1005. R.L. Halterman and T.M. Ramsey, Organometallics 12 (1993) 2879; (c) Alkene isomerization: Z. Chen and R.L. Halterman, J. Am. Chem. Soc. 114, (1992) 2276; (d) Ketone reduction: S.C. Berk, K.A. Kreuzer and S.L. Buchwald, J. Am. Chem. Soc. (1991) 113, 2092; (e) Diels-Alder reaction: Y. Hong, B.A. Kuntz and S. Collins, Organometallics (1993) 12, 964; (f) Allyltitanium reaction: S. Collins, B.A. Kuntz and Y. Hong J. Org. Chem. 54, (1989) 4154; (g) Allylic amines: R.B. Grossman, W.M. Davis and S.L. Buchwald, J. Am. Chem. Soc. 113 (1991) 2321.
- [3] W.W. Ellis, K. Hollis, W. Odenkirk, J. Whelan, R. Ostrander, A.L. Rheingold and B. Bosnich, *Organometallics 12* (1993) 4391 and references therein.
- [4] E.P. Bierwagen, J.E. Bercaw and W.A. Goddard III, J. Am. Chem. Soc. 116 (1994) 1481, L.A. Castonguay and A.K. Rappé, J. Am. Chem. Soc. 114, (1992) 5832.

- [5] C. Janiak, J. Organomet. Chem. 452 (1993) 63.
- [6] C. Sishta, R.M. Hathorn and T.J. Marks, J. Am. Chem. Soc. 114, (1992) 1112 and references therein.
- [7] G.G. Hlatky, H.W. Turner and R.R. Eckman, J. Am. Chem. Soc. 111 (1989) 2728.
- [8] J.C.W. Chien, W-M. Tsai and M.D. Rausch, J. Am. Chem. Soc. 113, (1991) 8570.
- [9] X. Yang, C.L. Stern and T.J. Marks, J. Am. Chem. Soc. 113 (1991) 3623.
- [10] R.F. Jordan, P. Bradley, N.C. Baenziger and R.E. LaPointe, J. Am. Chem. Soc. 112 (1990) 1289. R.F. Jordan, R.E. LaPointe, P. Bradley and N.C. Baenziger, Organometallics 8, (1989) 2892. J.J.W. Eshuis, Y.Y. Tan, A. Meetsma, J.H. Teuben, J. Renkema and G.G. Evens, Organometallics 11, (1992) 362.
- [11] W-M Tsai and J.C.W. Chien, J. Polym. Sci. Part A: Polym. Chem. 32, (1994) 149.
- [12] W.A. Hermann, J. Rohrmann, E. Herdtweck, W. Spaleck and A. Winter, Angew. Chem. 101, (1989) 1536.
- [13] Y-X Chen, M.D. Rausch and J.C.W. Chien, Organometallics 12 (1993) 4607.
- [14] Comparison with an authentic sample from the authors laboratory.
- [15] A. Razavi and J. Ferrara, J. Organomet. Chem. 435, (1992) 299.
- [16] A. Razavi and J.L. Atwood, J. Organomet. Chem. 459 (1993) 117.
- [17] G.M. Sheldrick, SHELXTL PLUS Release 4.11/v, Siemens analytical X-ray Instruments Inc., Madison, WI, USA, 1990.